Sistem Persamaan dan Pertidaksamaan Linear Dua Variable
By Nadya Putri Safira - Februari 28, 2019
Persamaan Linear Dua Variabel
Persamaan linear dua variabel adalah persamaan yang mengandung dua variabel dimana pangkat/derajat tiap-tiap variabelnya sama dengan satu.
Bentuk umum persamaan linear dua variabel adalah:
ax + by = c
dimana = x dan y adalah variabel
Sistem Persamaan Linear Dua Variabel
Sistem persamaan linear dua variabel adalah dua persamaan linear dua variabel yang mempunyai hubungan diantara keduanya dan mempunyai satu penyelesaian. Bentuk umum sistem persamaan linear dua variabel adalah:
ax + by = c
Bentuk umum persamaan linear dua variabel adalah:
ax + by = c
dimana = x dan y adalah variabel
Sistem Persamaan Linear Dua Variabel
Sistem persamaan linear dua variabel adalah dua persamaan linear dua variabel yang mempunyai hubungan diantara keduanya dan mempunyai satu penyelesaian. Bentuk umum sistem persamaan linear dua variabel adalah:
ax + by = c
px + qy = d
dimana: x dan y disebut variabel
a, b, p dan q disebut koefisien
c dan r disebut konstanta
C. Penyelesaian Sistem Persamaan Linear Dua Variabel
1. Metode Eliminasi
Pada metode eliminasi, untuk menentukan himpunan penyelesaian dari sistem persamaan linear dua variabel, caranya adalah dengan menghilangkan (mengeliminasi) salah satu variabel dari sistem persamaan tersebut. Jika variabelnya x dan y, untuk menentukan variabel x kita harus mengeliminasi variabel y terlebih dahulu, atau sebaliknya. Perhatikan bahwa jika koefisien dari salah satu variabel sama maka kita dapat mengeliminasi atau menghilangkan salah satu variabel tersebut, untuk selanjutnya menentukan variabel yang lain.
Contoh:
1. Dengan metode eliminasi, tentukan himpunan penyelesaian sistem persamaan 2x + 3y = 6 dan x – y = 3 !
Penyelesaian:
2x + 3y = 6 dan x – y = 3
Langkah I (eliminasi variabel y)
Untuk mengeliminasi variabel y, koefisien y harus sama, sehingga persamaan 2x + 3y = 6 dikalikan 1 dan persamaan
x – y = 3 dikalikan 3.
2x + 3y = 6 × 1 2x + 3y = 6
x – y = 3 × 3 3x – 3y = 9
5x = 15
x = 15/5
x = 3
Langkah II (eliminasi variabel x)
Seperti langkah I, untuk mengeliminasi variabel x, koefisien x harus sama, sehingga persamaan 2x + 3y = 6 dikalikan 1 dan
x – y = 3 dikalikan 2.
2x + 3y = 6 ×1 2x + 3y = 6
x – y = 3 ×2 2x – 2y = 6
5y = 0
y = 0/5
y = 0
Jadi, himpunan penyelesaiannya adalah {(3,0)}.
1. Dengan metode eliminasi, tentukan himpunan penyelesaian sistem persamaan 2x + 3y = 6 dan x – y = 3 !
Penyelesaian:
2x + 3y = 6 dan x – y = 3
Langkah I (eliminasi variabel y)
Untuk mengeliminasi variabel y, koefisien y harus sama, sehingga persamaan 2x + 3y = 6 dikalikan 1 dan persamaan
x – y = 3 dikalikan 3.
2x + 3y = 6 × 1 2x + 3y = 6
x – y = 3 × 3 3x – 3y = 9
5x = 15
x = 15/5
x = 3
Langkah II (eliminasi variabel x)
Seperti langkah I, untuk mengeliminasi variabel x, koefisien x harus sama, sehingga persamaan 2x + 3y = 6 dikalikan 1 dan
x – y = 3 dikalikan 2.
2x + 3y = 6 ×1 2x + 3y = 6
x – y = 3 ×2 2x – 2y = 6
5y = 0
y = 0/5
y = 0
Jadi, himpunan penyelesaiannya adalah {(3,0)}.
2. Tentukan nilai dari persamaan berikut x + 4y = -1 dan 2x + 3y = 3
Jawab :
Variable x dihilangkan terlebih dahulu karena koefisiennya sama. Sehingga diperoleh variable y sebagai berikut :
x + 4y = -1
2x + 3y = 3
2x + 8y = -2
2x + 3y = 3 –
5y = -5
y = -1
Kemudian variable y dihilangkan, sehingga diperoleh variable x sebagai berikut:
2x + 4y =10
x – 2y = 25
3x + 12y = -3
8x + 12y = 12 +
-5x = -15
x = 3
jadi, himpunan penyelesaiannya adalah {(3,-1)}
- 2. Metode SubstitusiMetode Substitusi Untuk menyelesaikan sistem persamaan linear dua variabel dengan metode substitusi, terlebih dahulu kita n yatakan variabel yang satu ke dalam variabel yang lain dari suatu persamaan, kemudian menyubstitusikan (menggantikan) variabel itu dalam persamaan yang lainnya.Contoh:
Dengan metode substitusi, tentukan himpunan penyelesaian dari persamaan 2x +3y = 6 dan x – y = 3
Penyelesaian:
Persamaan x – y = 3 ekuivalen dengan x = y + 3. Dengan menyubstitusi persamaan x = y + 3 ke persamaan 2x + 3y = 6 diperoleh sebagai berikut:
2x + 3y = 6
ó 2 (y + 3) + 3y = 6
ó 2y + 6 + 3y = 6
ó 5y + 6 = 6
ó 5y + 6 – 6 = 6 – 6
ó 5y = 0
Persamaan x – y = 3 ekuivalen dengan x = y + 3. Dengan menyubstitusi persamaan x = y + 3 ke persamaan 2x + 3y = 6 diperoleh sebagai berikut:
2x + 3y = 6
ó 2 (y + 3) + 3y = 6
ó 2y + 6 + 3y = 6
ó 5y + 6 = 6
ó 5y + 6 – 6 = 6 – 6
ó 5y = 0
ó y = 0
Selanjutnya untuk memperoleh nilai x, substitusikan nilai y ke persamaan x = y + 3, sehingga diperoleh:
x = y + 3
ó x = 0 + 3
ó x = 3
Jadi, himpunan penyelesaiaanya adalah {(3,0)}
Selanjutnya untuk memperoleh nilai x, substitusikan nilai y ke persamaan x = y + 3, sehingga diperoleh:
x = y + 3
ó x = 0 + 3
ó x = 3
Jadi, himpunan penyelesaiaanya adalah {(3,0)}
3. Metode Gabungan
Untuk menyelesaikan sistem persamaan linear dua variabel dengan metode gabungan, kita menggabungkan metode eliminasi dan substitusi.
Contoh:
Dengan metode gabungan tentukan himpunan penyelesaian dari sistem persamaan 2x – 5y = 2 dan x + 5y = 6 !
Penyelesaian:
Langkah pertama yaitu dengan metode eliminasi, diperoleh.
2x – 5y = 2 ×1 2x – 5y = 2
x + 5y = 6 ×2 2x +10y = 12
-15y = -10
y = (-10)/(-15)
y = 2/3
Kemudian, disubstitusikan nilai y ke persamaan x + 5y = 6 sehingga diperoleh.
x + 5y = 6
ó x + 5 (2/3) = 6
ó x + 10/15 = 6
ó x = 6 – 10/15
ó x = 22/3
Jadi, himpunan penyelesaiaanya adalah {(2 2/3,2/3)}
Sistem pertidaksamaan dua variable
1. 2x ≥ 4; pertidaksamaan linear satu peubah
2. 3x + y < 0; pertidaksamaan linear dua peubah
3. x – 2y ≤ 3; pertidaksamaan linear dua peubah
4. x + y – 2z > 0; pertidaksamaan linear tiga peubah
2. 3x + y < 0; pertidaksamaan linear dua peubah
3. x – 2y ≤ 3; pertidaksamaan linear dua peubah
4. x + y – 2z > 0; pertidaksamaan linear tiga peubah
Dalam postingan perpustakaan online kali ini kita hanya akan mempelajari pertidaksamaan linear dengan dua peubah. Gabungan dari dua atau lebih pertidaksamaan linear dua peubah disebut sistem pertidaksamaan linear dua peubah.
Contoh sistem pertidaksamaan linear dua peubah adalah sebagai berikut.
3x + 8y ≥ 24,
x + y ≥ 4,
x ≥ 0,
y ≥ 0.
3x + 8y ≥ 24,
x + y ≥ 4,
x ≥ 0,
y ≥ 0.
1. Daerah Himpunan Penyelesaian Pertidaksamaan Linear Dua Peubah
Penyelesaian suatu pertidaksamaan linear dua peubah adalah pasangan berurut (x,y) yang memenuhi pertidaksamaan linear tersebut. Himpunan penyelesaian tersebut dinyatakan dengan suatu daerah pada bidang kartesius (bidang XOY) yang diarsir. Untuk lebih memahami daerah himpunan penyelesaian pertidaksamaan linear dua peubah, pelajari contoh-contoh berikut.
Contoh :
Tentukan himpunan penyelesaian dari pertidaksamaan linear di bawah ini.
a. 2x + 3y ≥ 12 c. 4x – 3y < 12
b. 2x – 5y > 20 d. 5x + 3y ≤ 15
Tentukan himpunan penyelesaian dari pertidaksamaan linear di bawah ini.
a. 2x + 3y ≥ 12 c. 4x – 3y < 12
b. 2x – 5y > 20 d. 5x + 3y ≤ 15
Penyelesaian:
a. Mula-mula dilukis garis 2x + 3y = 12 dengan menghubungkan titik potong garis dengan sumbu X dan sumbu Y.Titik potong garis dengan sumbu X berarti y = 0, diperoleh x = 6 (titik (6,0)).
Titik potong garis dengan sumbu Y berarti x = 0, diperoleh y = 4 (titik (0,4)).
Garis 2x + 3y = 12 tersebut membagi bidang kartesius menjadi dua bagian. Untuk menentukan daerah yang merupakan himpunan penyelesaian dilakukan dengan mengambil salah satu titik uji dari salah satu sisi daerah. Misalkan diambil titik (0,0), kemudian disubstitusikan ke pertidaksamaan sehingga diperoleh:
Garis 2x + 3y = 12 tersebut membagi bidang kartesius menjadi dua bagian. Untuk menentukan daerah yang merupakan himpunan penyelesaian dilakukan dengan mengambil salah satu titik uji dari salah satu sisi daerah. Misalkan diambil titik (0,0), kemudian disubstitusikan ke pertidaksamaan sehingga diperoleh:
2 x0 + 3x 0 < 12
0 < 12
0 < 12
Jadi 0 ≥ 12 salah, artinya tidak dipenuhi sebagai daerah penyelesaian.
Jadi, daerah penyelesaiannya adalah daerah yang tidak memuat titik (0,0), yaitu daerah yang diarsir pada gambar di bawah ini.
b. Mula-mula dilukis garis 2x – 5y = 20 dengan menghubungkan titik potong garis di sumbu X dan sumbu Y.
Titik potong garis dengan sumbu X, y = 0, diperoleh x = 10 (titik (10,0))
Titik potong garis dengan sumbu Y, x = 0, diperoleh y = –4 (titik (0,–4))
Titik potong garis dengan sumbu Y, x = 0, diperoleh y = –4 (titik (0,–4))
Garis 2x – 5y = 20 tersebut membagi bidang kartesius menjadi dua bagian. Untuk menentukan daerah yang merupakan himpunan penyelesaian dilakukan dengan mengambil titik uji dari salah satu sisi daerah. Misalkan diambil titik (0,0), kemudian disubstitusikan ke pertidaksamaan sehingga diperoleh:
2 x0 – 5 x0 > 20
0 > 20 (salah), artinya tidak dipenuhi.
0 > 20 (salah), artinya tidak dipenuhi.
Jadi, daerah penyelesaiannya adalah daerah yang tidak memuat titik (0,0), yaitu daerah yang diarsir pada gambar.
c. Mula-mula dilukis garis 4x – 3y = 12 dengan menghubungkan titik potong garis di sumbu X dan sumbu Y.
Titik potong garis dengan sumbu X maka y = 0 diperoleh x = 3 (titik (3,0))
Titik potong garis dengan sumbu Y maka x = 0 diperoleh y = –4 (titik (0,–4))
Titik potong garis dengan sumbu Y maka x = 0 diperoleh y = –4 (titik (0,–4))
Garis 4x – 3y = 12 tersebut membagi bidang kartesius menjadi dua bagian. Untuk menentukan daerah yang merupakan himpunan penyelesaian dilakukan dengan mengambil salah satu titik uji dari salah satu sisi daerah. Misalkan diambil titik (0,0), kemudian disubstitusikan ke pertidaksamaan sehingga diperoleh:
4 x0 – 3x 0 < 12
0 < 12 (benar), artinya dipenuhi sebagai daerah penyelesaian.
0 < 12 (benar), artinya dipenuhi sebagai daerah penyelesaian.
Jadi, daerah penyelesaiannya adalah daerah yang memuat titik (0,0), yaitu daerah yang diarsir pada gambar di bawah.
d. Mula-mula dilukis garis 5x + 3y = 15 dengan menghubungkan titik potong garis di sumbu X dan sumbu Y.
Titik potong garis dengan sumbu X maka y = 0, diperoleh x = 3 (titik (3,0))
Titik potong garis dengan sumbu Y maka x = 0, diperoleh y = 5 (titik (0,5))
Titik potong garis dengan sumbu Y maka x = 0, diperoleh y = 5 (titik (0,5))
Garis 5x + 3y = 15 tersebut membagi bidang kartesius menjadi dua bagian. Untuk menentukan daerah yang merupakan himpunan penyelesaian dilakukan dengan mengambil salah satu titik uji dari salah satu sisi daerah. Misalkan diambil titik (0,0), kemudian disubstitusikan ke pertidaksamaan sehingga diperoleh:
5 x0 + 3x 0 ≤15
0 ≤ 15 (benar), artinya dipenuhi.
0 ≤ 15 (benar), artinya dipenuhi.
Jadi, daerah penyelesaiannya adalah daerah yang memuat titik (0,0), yaitu daerah yang diarsir pada gambar.
Berdasarkan contoh di atas, cara menentukan himpunan penyelesaian pertidaksamaan linear dengan dua peubah dapat dilakukan dengan langkah-langkah sebagai berikut:
1. Lukislah garis ax + by = c pada bidang kartesius dengan menghubungkan titik potong garis pada sumbu X di titik (c/a ,0) dan pada sumbu Y di titik (0,c/b ).
2. Selidiki sebuah titik uji yang terletak di luar garis dengan cara menyubstitusikannya pada pertidaksamaan. Jika pertidaksamaan dipenuhi (benar), maka daerah yang memuat titik tersebut merupakan daerah himpunan penyelesaian. Jika pertidaksamaan tidak dipenuhi (salah), maka daerah yang tidak memuat titik uji merupakan daerah himpunan penyelesaian.
2. Daerah Penyelesaian Sistem Pertidaksamaan Linear
a. Menentukan Daerah Penyelesaian Sistem Pertidaksamaan Linear
Himpunan penyelesaian dari sistem pertidaksamaan linear dua peubah adalah himpunan titik-titik (pasangan berurut (x,y)) dalam bidang kartesius yang memenuhi semua pertidaksamaan linear dalam sistem tersebut. Sehingga daerah himpunan penyelesaianny amerupakan irisan himpunan-himpunan penyelesaian dari pertidaksamaan dalam sistem pertidaksamaan linear dua peubah itu. Agar kalian lebih mudah dalam memahami daerah penyelesaian dari sistem pertidak-samaan linear dua peubah, perhatikan contoh-contoh di bawah ini.
Himpunan penyelesaian dari sistem pertidaksamaan linear dua peubah adalah himpunan titik-titik (pasangan berurut (x,y)) dalam bidang kartesius yang memenuhi semua pertidaksamaan linear dalam sistem tersebut. Sehingga daerah himpunan penyelesaianny amerupakan irisan himpunan-himpunan penyelesaian dari pertidaksamaan dalam sistem pertidaksamaan linear dua peubah itu. Agar kalian lebih mudah dalam memahami daerah penyelesaian dari sistem pertidak-samaan linear dua peubah, perhatikan contoh-contoh di bawah ini.
Contoh : Tentukan daerah himpunan penyelesaian dari sistem pertidaksamaan berikut.
a. 3x + 5y ≤ 15 b. x + y ≤ 6
x ≥ 0 2x + 3y ≤ 12
y ≥ 0 x ≥ 1
y ≥ 2
a. 3x + 5y ≤ 15 b. x + y ≤ 6
x ≥ 0 2x + 3y ≤ 12
y ≥ 0 x ≥ 1
y ≥ 2
Penyelesaian:
a. Mula-mula gambar garis 3x + 5y =15, x = 0, dan y =0
Untuk 3x + 5y ≤ 15
Pilih titik (0,0), kemudian substitusikan ke pertidaksamaan sehingga diperoleh:
3x 0 + 5x 0 ≤ 15
0 ≤ 15 (benar), artinya dipenuhi
Untuk 3x + 5y ≤ 15
Pilih titik (0,0), kemudian substitusikan ke pertidaksamaan sehingga diperoleh:
3x 0 + 5x 0 ≤ 15
0 ≤ 15 (benar), artinya dipenuhi
Jadi, daerah penyelesaiannya adalah daerah yang memuatntitik (0,0)
Untuk x ≥ 0, pilih titik (1,1) kemudian disubstitusikan ke pertidaksamaan sehingga diperoleh:
1 ≥ 0 (benar), artinya dipenuhi.
Untuk x ≥ 0, pilih titik (1,1) kemudian disubstitusikan ke pertidaksamaan sehingga diperoleh:
1 ≥ 0 (benar), artinya dipenuhi.
Jadi, daerah penyelesaiannya adalah daerah yang memuat titik (1,1)
Untuk y ≥ 0, pilih titik (1,1) kemudian substitusikan ke pertidaksamaan sehingga diperoleh:
1 ≥ 0 (benar), artinya dipenuhi.
Jadi, himpunan penyelesaiannya adalah daerah yang memuat titik (1,1).
Untuk y ≥ 0, pilih titik (1,1) kemudian substitusikan ke pertidaksamaan sehingga diperoleh:
1 ≥ 0 (benar), artinya dipenuhi.
Jadi, himpunan penyelesaiannya adalah daerah yang memuat titik (1,1).
Daerah himpunan penyelesaian sistem pertidaksamaan merupakan irisan dari ketiga daerah himpunan penyelesaian pertidaksamaan di atas, yaitu seperti terlihat pada gambar berikut ini (daerah yang diarsir).
b. Mula-mula gambar garis x + y =6, 2x + 3y = 12, x = 1, dan y = 2. Untuk x + y ≤ 6, pilih titik (0,0), kemudian substitusikan ke pertidaksamaan sehingga diperoleh:
1 x0 + 1 x0 ≤ 6
0 ≤ 6 (benar), artinya dipenuhi.
0 ≤ 6 (benar), artinya dipenuhi.
Jadi, daerah penyelesaiannya adalah daerah yang memuat titik (0,0).
Untuk 2x + 3y ≤ 12, pilih titik (0,0), kemudian substitusikan ke pertidak-samaan sehingga diperoleh:
Untuk 2x + 3y ≤ 12, pilih titik (0,0), kemudian substitusikan ke pertidak-samaan sehingga diperoleh:
2 x0 + 3x 0 ≤ 12
0 ≤ 12 (benar), artinya dipenuhi.
0 ≤ 12 (benar), artinya dipenuhi.
Jadi, daerah penyelesaiannya adalah daerah yang memuat titik (0,0).
Untuk x ≥ 1, pilih titik (2,1) kemudian disubstitusikan ke pertidaksamaan sehingga diperoleh 2 ≥ 1 (benar), artinya dipenuhi. Jadi, daerah penyelesaiannya adalah daerah yang memuat titik (2,1).
Untuk y ≥ 2, pilih titik (1,3) kemudian substitusikan ke pertidaksamaan sehingga diperoleh 3 ≥ 2 (benar), artinya dipenuhi. Jadi, himpunan penyelesaiannya adalah daerah yang memuat titik (1,3).
Daerah himpunan penyelesaian sistem pertidaksamaan tersebut merupakan irisan dari ketiga daerah himpunan penyelesaian pertidaksamaan di atas, yang seperti terlihat pada gambar di samping (daerah yang diarsir)
b. Menentukan Sistem Pertidaksamaan jika Daerah Himpunan Penyelesaian Sistem Pertidaksamaan Linear Dua Peubah Diketahui
Cara menentukan daerah himpunan penyelesaian dari sistem pertidaksamaan linear dua peubah telah dipelajari sebelumnya. Sekarang bagaimana menentukan sistem pertidaksamaan jika daerah himpunan penyelesaiannya yang diketahui? Untuk itu simaklah beberapa contoh di bawah ini.
Contoh: Daerah yang diarsir di bawah ini merupakan daerah himpunan penyelesaiaan dari suatu sistem pertidaksamaan linear dua peubah. Tentukanlah sistem pertidaksamaan tersebut.
Penyelesaian:
a. Garis l1 melalui titik (2,0) dan (0,2), persamaan garis l1 adalah:
x/2 + y/2 = 1 menjadi x+y=2
Garis l2 melaui titik (1,0) dan (0,2), persamaan garis l2 adalah:
x/1 + y/2 = 1 menjadi 2x+y=2
Dari gambar terlihat bahwa daerah himpunan penyelesaian (yang diarsir) berada di bawah garis l1, di atas garis l2, di kanan sumbu Y, dan di atas sumbu X. Sistem pertidaksamaannya adalah:
x + y ≤ 2, 2x + y ≥ 2, x ≥ 0, dan y ≥ 0
b. Garis l1 melalui titik (4,0) dan (0,4), persamaan garis l1 adalah:
x/4 + y/4 = 1 menjadi x+y=4
Garis l2 melalui titik (2,0) dan (0,–1), persamaan garis l2 adalah:
x/2 + y/-1 = 1 menjadi -x+2y = -2
x-2y = 2
Dari gambar terlihat bahwa daerah himpunan penyelesaian (yang diarsir) berada di bawah garis l1, di atas garis l2, di kanan sumbu Y, dan di atas sumbu X. Sistem pertidaksamaannya adalah:
x + y ≤ 4, x – 2y ≤ 2, x ≥ 0, dan y ≥ 0
0 komentar